论文部分内容阅读
以广西前汛期5、6月区域平均日降水量作为预报对象,采用人工神经网络方法进行新的数值预报产品释用预报研究。对T213预报因子进行自然正交分解,有效浓缩数值预报产品因子的预报信息,并结合日本降水预报模式因子建立广西3个不同区域的逐日降水神经网络释用预报模型。运用与实际业务预报相同的方法对2004年5、6月进行逐日的实际预报试验,并与T213的降水预报进行对比分析。结果表明,本文建立的3个区域日平均降水量神经网络预报模型,在预报性能上明显优于同期的T213降水预报。