论文部分内容阅读
本文根据kaeding等提出的以HZSM—5催化剂的甲苯烷基化机理和Guisnet等提出的以HZSM—5作催化剂的间二甲笨异构化机理,并由BEP原理,我们通过比较σ络合物的总能量来判断生成各种不同位置取代的二甲苯的速率,进而判断反应的选择性。根据ZSM—5分子筛的窗口模型和Ni/ZSM—5,CO/ZSM—5的X衍射实验结果。采用CNDO/2法计管了HZSM—5,Co/ZSM—5,Ni/ZSM—5通道中不同σ络合物的总能量。根据计算结果,从理论上解释了HZSM—5和Co/ZSM—5,Ni/ZSM—5催化剂,在催化甲苯烷基化和间二甲苯异构化反应中对提高二甲苯选择性的原因,并且,通过对双原子相互作用的分析,本文还对HZSM—5通道及金属原子在催化反应中的作用给出了较为具体的描述。
Based on the alkylation mechanism of toluene with HZSM-5 catalyst proposed by kaeding et al. And the mechanism of m-isomerization with HZSM-5 as a catalyst proposed by Guisnet et al. And by the BEP principle, Of the total energy to determine the generation of a variety of different positions substituted xylene rate, and then determine the reaction selectivity. According to the window model of ZSM-5 zeolite and the X-ray diffraction results of Ni / ZSM-5 and CO / ZSM-5, The total energy of different σ complexes in HZSM-5, Co / ZSM-5 and Ni / ZSM-5 channels was calculated by CNDO / 2 method. According to the calculation results, the reason why the selectivity of xylene is increased in the catalyzed toluene alkylation and m-xylene isomerization reaction is theoretically explained by HZSM-5, Co / ZSM-5 and Ni / ZSM- And through the analysis of diatomic interaction, this article also gives a more specific description of the role of HZSM-5 channels and metal atoms in the catalytic reaction.