论文部分内容阅读
基于晋北盐碱地土壤水分原位入渗试验,建立了容量为150组的盐碱地Philip入渗模型参数样本,借助MATLAB软件,分别构建基于最值归一化法、联合归一化法的BP神经网络预测模型,其中模型的输入变量为土壤基本理化参数,输出变量为Philip入渗模型参数吸渗率S和稳渗率A,由两模型的预测结果发现,预测误差均小于6%,在建模误差允许范围之内,所建模型可靠;对比模型预报结果发现,联合归一化法处理过的输入数据更具代表性,且提高了网络收敛速度及预测精度。用实测资料对基于联合归一化法建立的模型进行精度检验,结果表