论文部分内容阅读
基于BP神经网络时间序列的隧道涌水量预测模型不必考虑隧道涌水量的影响因素及其关系,而是将隧道涌水量的时间序列做归一化处理,作为模型的输入输出变量,通过历史数据和所建立的预测模型来预测隧道涌水量。以一隧道1999年6月—2000年6月涌水数据序列为例,进行了基于BP神经网络时间序列模型的隧道涌水量预测,预测误差约为5.74%,满足精度要求。