论文部分内容阅读
In this paper, almost all available observational data and the latest 6.0 version of Regional Atmospheric Modeling System (RAMS) model were employed to investigate a heavy sea fog event occurring over the Yellow Sea from 2 to 5 May 2009. The evolutionary process of this event was documented by using Multifunctional Transport Satellites-1 (MTSAT-1) visible satellite imagery. The synoptic situation, sounding profiles at two selected stations were analyzed. The difference between the air temperature and sea surface temperature during the sea fog event over the entire sea region was also analyzed. In order to better understand this event, an RAMS modeling with a 15 km×15 km resolution was performed. The model successfully reproduced the main characteristics of this sea fog event. The simulated height of fog top and the area of lower atmospheric visibility derived from the RAMS modeling results showed good agreement with the sea fog area identified from the satellite imagery. Examinations of both observational data and RAMS modeling results suggested that advection cooling seemed to play an important role in the formation of this sea fog event.
In this paper, almost all available observational data and the latest 6.0 version of Regional Atmospheric Modeling System (RAMS) model were employed to investigate a heavy sea fog event occurring over the Yellow Sea from 2 to 5 May 2009. The evolutionary process of this event was documented by using Multifunctional Transport Satellites-1 (MTSAT-1) visible satellite imagery. The synoptic situation, sounding profiles at two selected stations were analyzed. The difference between the air temperature and sea surface temperature during the sea fog event over the entire sea The model successfully reproduced the main characteristics of this sea fog event. The simulated height of fog top and the area of lower atmospheric visibility derived from the RAMS modeling results showed good agreement with the sea fog area identified from the satellite imagery. Examinations of both observational data and RAMS modeling results suggested that advection cooling seemed to play an important role in the formation of this sea fog event.