论文部分内容阅读
在政府采购领域,由于数据不包含采购单位对采购商品的评分,而且目前无法获取用户的行为数据,故在实施推荐时,传统的用户相似度计算方法存在不足。针对该问题,在Jaccard系数计算方法的基础上,考虑采购单位固有的属性信息,对传统的用户相似度计算方法进行了改进,并提出了一种融合用户自身属性的基于用户的协同过滤算法。实验结果表明:本算法在一定程度上提高了系统的推荐质量。