中空纳米材料的构建原理及其在光催化制氢和二氧化碳还原反应中的应用

来源 :催化学报 | 被引量 : 0次 | 上传用户:chengzi1022
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着全球经济的快速发展,能源短缺与环境污染成为当今世界共同关注的热点问题,开发和利用洁净能源成为当务之急.近年,以半导体为基础的光催化技术引起了国内外的广泛关注,其中包括光催化分解水制氢、光催化还原CO2、光催化固氮以及光催化降解污染物等.尤其太阳能驱动的光催化分解水和光催化CO2还原均可将太阳能转化为可储存和运输的化学能源.因此,设计高效稳定的光催化材料具有重要意义.中空结构材料由于具有比表面积大、光吸收效率高以及载流子传输路径缩短等优点,在能量转换领域备受关注,且中空材料的内外表面结构为其它组分的沉积提供了良好的平台.近年来,研究人员设计和合成了大量的多级纳米中空复合材料.本文首先综述了中空材料的一般制备方法:硬模板法、软模板法以及自模板法,并从合成方法的基本概念、合成步骤以及优缺点进行了概述.总结了近年用于光催化领域中典型单一中空结构材料的合成方法和机理,包括中空结构的CdS,ZnxCd1-xS,g-C3N4,TiO2,CeO2等体系.但单一催化材料的光生电子-空穴对的复合效率较高,导致其催化性能较低,因此,合理设计和构建多级结构对于提升光催化性能具有重要的意义.其次,对多级结构的中空材料进行了分类,概述了构建策略、光催化制氢以及光催化还原二氧化碳的机制.具有多级结构的中空光催化剂可分为两大类,包括中空助催化剂为基体的材料和中空主光催化剂为基体的材料,其它复杂中空光催体系也基于上述体系的延伸.最后,对中空结构的特征和影响规律的应用实例进行了介绍.同时,对文献报道的探索中空纳米材料光催化机理的有效方法,如表面光电压测试、电子自旋顺磁共振技术、理论计算结合实验等技术手段进行了总结.尽管中空材料在能量转换领域取得了一系列进展,但该领域仍然存在诸多挑战,与实际应用的要求仍然差距较大.中空光催化材料的设计、制备和性能调控需要综合考虑经济、高性能、稳定性和环境友好等因素,为大规模应用提供基础.另一方面,探索光催化机理非常重要,深入进行机理研究不仅有利于设计高效光催化剂,推动表征技术和微观结构分析的进步,还有助于光催化领域的持续发展.综上,本文为新型中空材料的制备和光催化制氢和CO2还原机理的深入探索提供一定的参考和依据.“,”Photocatalysis is considered a prospective way to alleviate the energy crisis and environmental pollution.It is therefore extremely important to design highly efficient photocatalysts for catalytic systems.In recent years,hollow-structured materials have attracted considerable interest for ap-plication in energy conversion fields owing to their large specific surface areas,improved light ab-sorption,and shortened charge carrier transfer path.Because they contain inner and outer surfaces,hollow-structured materials can provide a superior platform for the deposition of other compo-nents.A number of hollow-structured hierarchical systems have been designed and fabricated in recent decades.It is important to rationally design and construct complex hierarchical structures.In this review,general preparation approaches for hollow-structured materials are presented,fol-lowed by a summary of the recent synthesis methods and mechanisms of typical hollow-structured materials for applications in the photocatalytic field.Complex hollow-structured hierarchical pho-tocatalysts are classified into two types,hollow cocatalyst-based and hollow host photocata-lyst-based,and the design principle and analysis of the photocatalytic reaction mechanism for pho-tocatalytic H2 evolution and CO2 reduction are also introduced.The effects of hollow-structured materials have also been investigated.This review provides a reference for the rational construction of advanced,highly efficient photocatalytic materials.
其他文献
探索高效、经济的非金属氧还原(ORR)电催化剂已成为电化学能源体系的关键.科学界最具挑战性的目标之一是通过合理地验证和精确地调节活性位点来设计结构明确、性能优异的催化剂材料.本文提出一种精确和可控的串联协同作用的活性位点策略,以提高MFCOFs的ORR催化活性.以亚胺-N、噻吩-S和三嗪-N等作为结构单元,通过精确的串联策略合成了三种MFCOFs,分别为亚胺-N构建的TFPB-TAPB-COF、亚胺-N和噻吩-S构建的BTT-TAPB-COF以及亚胺-N、噻吩-S和三嗪-N三种活性中心构建的BTT-TAT
在光催化过程中,光催化剂被太阳能激发产生光生电子和空穴,来实现环境净化或能量转换,是应对全球变暖和能源短缺的有效途径之一.然而,光催化技术面临的主要瓶颈问题是光生载流子的低分离效率和高反应能垒.而催化剂本身的特性对这一点起到了决定性的作用.因此,催化剂的合理设计和改性是提高光催化效率的关键.金属有机框架(MOFs)是一类由金属节点和有机配体组成的新型结晶多孔材料.基于结构多样性、超高比表面积、形状和尺寸可调的纳米孔或纳米通道等优异的特性,MOFs基材料在光催化领域引起了广泛关注.然而,MOFs的主要问题之
有机自由基化学的发展可追溯到110多年前.起初,高活性的自由基中间体被认为是难以控制且不可预测的物种,往往导致反应变得杂乱无章,这种误解导致该领域的研究没有得到足够的重视.为了发展高效、高选择性且符合绿色化学要求的化学转化,合成化学家们一直致力于开发新颖的催化体系和反应试剂,而自由基化学因其独特的反应性质和巨大的发展潜力也逐渐引起人们的广泛关注.与离子型物种相比,自由基物种在拓展反应类型、提升反应兼容性以及快速构筑分子复杂性方面具有显著优势.伴随着这一领域的快速发展,自由基化学已逐渐取得了许多不错的突破和
贵金属广泛用于多相催化研究,对于诸多具有重要科学意义和工业应用价值的化学反应展现出优异的催化活性和选择性.引入轻合金元素(如C,H,B和N),可以调控贵金属的晶体结构和电子性质,是进一步提高贵金属催化性能的重要策略.与传统的金属合金催化剂相比,这种轻元素合金化的催化剂具有一些独特性:(1)轻元素由于原子尺寸很小,容易溶于金属晶格的间隙位点;(2)一些轻元素(如C,N和S)的电负性与金属的差别很大,能够在相邻原子间引起较大的电荷转移;(3)轻元素-金属合金中的电子相互作用主要由金属的d轨道和轻元素的s轨道杂
为了促进CO2电化学还原(ECR)制备燃料和高值化学品,开发高活性、低成本和高选择性催化剂至关重要.本文通过简单的溶剂热法一步合成超细氧化铜(CuO)纳米颗粒修饰的二维Cu基金属有机框架(CuO/Cu-MOF)复合催化剂.并采用X射线衍射、X射线光电子能谱、傅里叶变换红外光谱、高角环形暗场像-扫描透射电镜、N2吸附/脱附、元素分析谱、CO2吸附等方法进行表征,对CuO/Cu-MOF复合材料的组成、形貌和孔结构等进行了系统研究.结果 表明,超细CuO纳米粒子的尺寸为1.4到3.3 nm,均匀修饰在二维Cu-
电催化是发展可持续洁净能源技术的基础科学,是电化学能源转换和物质转化的关键环节.精准合成催化活性纳米结构是制约很多电催化反应走向实际应用的重要挑战.与湿化学合成、固相合成和气相沉积等传统方法相比,电化学合成是一种简单、快速、廉价及可控的高效催化材料制备方法,也是一种最为直接的一体化电极制备方法.本文综述了近年来利用电化学合成方法制备高效能源催化材料的研究进展.首先,简要介绍了电沉积、阴极腐蚀、电化学去合金化、电化学置换、电化学剥离和电化学修饰等几种主要电化学合成方法的基本原理,并讨论了电化学合成中电势、电
近年来,由于化石燃料不断消耗造成的二氧化碳气体过量排放,对人类生活环境造成越来越大的威胁.电催化二氧化碳还原反应是一种很有前景的解决方法,可回收废弃的二氧化碳并通过将其转化为可再生的燃料和化学品来最终实现碳循环.在各种还原产物中,多碳化学产物因其具有高能量密度和高商业价值而备受青睐.然而,由于涉及多个复杂的反应途径,设计对多碳产物高活性的催化剂仍然是一个关键挑战.铜是目前最有前途的催化剂之一,它具有独特的电子结构来吸附CO中间体,从而促进后续C-C偶联成多碳产物.虽然Cu基催化剂在电催化二氧化碳还原过程中
面对不可再生资源的快速消耗和环境污染的日益加重,寻找清洁可再生能源势在必行.氢能是一种清洁可再生的能源,是目前最有希望替代化石燃料的一种能源.电化学水分解可用来产生高纯氢气,其中析氢催化剂起着至关重要的作用.尽管贵金属铂基催化剂表现出优异的析氢性能,然而稀缺性和高成本限制了其大规模应用.因此,开发高效和地球存量丰富的电催化剂是实现大规模绿色能源转换和存储技术的关键.二维材料可分为非金属材料(如石墨烯、碳化氮和黑磷)和过渡金属基材料(如卤化物、磷酸盐、氧化物、氢氧化物和碳氮金属化合物),具有独特的结构和电化
氧化铜是一种有潜力的光电催化分解水用光阴极材料,但由于其在光电催化分解水过程中会发生严重的光腐蚀,限制了其实际应用.因此,构建有效的保护壳层抑制氧化铜光腐蚀,具有重要意义.虽然原子层沉积技术已成为构建光阴极保护层的主流手段,但由于制造成本高昂,难以满足未来实际应用对低成本和规模化的要求,因此,亟需发展简易、低廉的保护壳层制备手段.从电化学稳定性的角度出发,发现氮化铜(Cu3N)是一种电化学稳定的铜基氮化物,已被广泛应用于电催化还原CO2、N2和O2等领域,具有强的抗电化学还原能力(J.Am.Chem.So
化石燃料的广泛使用导致大气中CO2的排放量急剧增加,进而引起全球变暖和海洋酸化等一系列问题.CO加氢(费托合成)反应是利用非石油来源的原料生产液体燃料和化学品的一种重要途径.同时,利用可再生的H2将CO2转化为高附加值的产品有利于减少对化石燃料的依赖,减轻由于大气中CO2浓度过高带来的负面影响.开发新型、高效、稳定的催化剂是费托合成和CO2加氢制高附加值烃的关键因素之一.Fe基、Co基和Ru基催化剂是费托合成中常用的催化剂.而在CO2加氢反应中,Co基和Ru基催化剂上主要发生甲烷化反应,几乎没有长链烃生成