论文部分内容阅读
摘要:随着电力系统的快速发展,作为遏制电气故障的继电保护技术也不断提出新的要求。本文主要就我国电力系统继电保护技术的发展现状、继电保护的配置及发展趋势做了阐述。
关键词:继电保护技术;电力系统;应用
中图分类号:TM63 文献标识码:A
引言:近年来,随着电子及计算机通信技术的快速发展为继电保护技术的发展注入了新的活力,同时也给继电保护技术不断的提出了新的要求。作为继电保护技术如何才能有效的遏制故障,使电力系统的运行效率及运行质量得到有效的保障,是继电保护工作技术人员需要解决的技术问题。
1.继电保护发展的现状
上世纪60年代到80年代是晶体管继电保护技术蓬勃发展和广泛应用的时期。70年代中期起,基于集成运算放大器的集成电路保护投入研究,到80年代末集成电路保护技术已形成完整系列,并逐渐取代晶体管保护技术,集成电路保护技术的研制、生产、应用的主导地位持续到90年代初。与此同时,我国从70年代末即已开始了计算机继电保护的研究,高等院校和科研院所起着先导的作用,相继研制了不同原理、不同型式的微机保护装置。1984年原东北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,关于发电机失磁保护、发电机保护和发电机-变压器组保护、微机线路保护装置、微机相电压补偿方式高频保护、正序故障分量方向高频保护等也相继通过鉴定,至此,不同原理、不同机型的微机线路保护装置为电力系统提供了新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果,此时,我国继电保护技术进入了微机保护的时代。
目前,继电保护向计算机化、网络化方向发展,保护、控制、测量、数据通信一体化和人工智能化对继电保护提出了艰巨的任务,也开辟了研究开发的新天地。随着改革开放的不断深入、国民经济的快速发展,电力系统继电保护技术将为我国经济的大发展做出贡献。
2.电力系统继电保护装置的基本要求
(1)速动性。是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定性。(2)可靠性。保护装置如不能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定计算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性。(3)选择性。当供电系统中发生故障时,继电保护装置应能选择性地将故障部分切除。首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。(4)灵敏性。保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。
3.继电保护技术的配置和运用
3.1继电保护装置的作用继电保护装置在供电系统中具有极其重要的作用,在电力系统发生故障时,必须要通过保护装置将故障及时排除,以防发生更大的故障。当电力设备处于具有危害性的不正常的工作状态时,保护装置必须及时发出警报信号报知给工作人员,以便其及时消除不正常的工作状态,防止电力设备和元器件发生损害,从而导致电力事故的发生。
3.2继电保护装置的基本原理
电力系统发生短路故障以后,电流会骤增,电压会骤降,电路测量阻抗会减小,电流和电压之间的相位角会发生变化,这些参数的变化能构成原理不同的继电保护,比如电流增大会构成过电流、电流阻断保护;电压降低会构成低电压保护。
3.3继电保护装置的运用
工厂和企业的高压供电系统和变电站都会运用到继电保护装置。在高压供电系统分母线继电保护的应用中,分段母线不并列运行时装设的是电流速断保护和过电流保护,但是在断路器合闸的瞬间才会投入,合闸后就会自动解除。配电所的负荷等级如果较低,就可以不装设保护装置。变电站常见的继电保护装置有线路保护、母联保护、电容器保护、主变保护等。
(1)线路保护,通常采用二段式或者三段式的电流保护。其中一段是电流速断保护,二段是限时电流速断保护,三段是过电流保护。(2)母联保护 ,限时电流保护装置联同过电流保护装置一起装设。(3)电容器保护,包括过流保护、过压保护、零序电压保护和失压保护。(4)主变保护,包括主保护 (重瓦斯保护、差动保护),后备保护(复合电压过负荷保护、过流保护)继电保护技术在目前已经得到飞速的发展,各种各样的微机保护装置正逐渐被投入使用,微机保护装置是有各种不同,但是其基本原理和目的都是一样的。
4.电力系统继电保护发展趋势
4.1网络化发展趋势
计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化,它深刻影响着各个工业领域并为之提供了强有力的通信手段。多年来,继电保护的作用也只限于切除故障元件、缩小事故影响范围,这主要是由于缺乏强有力的數据通信手段。随着电力系统发展的要求及通信技术在继电保护领域应用的深入,继电保护的作用不只限于切除故障元件和限制事故影响范围 ( 这是首要任务) ,还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统运行状态和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络连接起来,亦即实现微机保护装置的网络化。实现保护装置的计算机联网将使保护装置能够得到更多的系统故障信息,提高对电力系统故障性质、故障位置判断和故障测距的准确性。总之,微机保护装置网络化可大大提高继电保护的性能及可靠性,是微机保护发展的必然趋势。
4.2继电保护智能化
智能化进入20世纪90年代以来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,电力系统继电保护领域内的一些研究工作也转向人工智能的研究。专家系统、人工神经网络等逐步应用于电力系统继电保护中,为继电保护的发展注入了新的活力。人工神经网络具有分布式存储信息、并行处理、自组织、自学习等特点,其应用研究发展十分迅速,目前主要集中在人工智能、信息处理、自动控制和非线性优化等问题的研究。结合人工智能技术,分析不确定因素对智能诊断系统的影响,而提高诊断的准确率,是今后智能诊断发展的方向。
4.3控制、保护、数据通信、测量一体化
在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可以从网络上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、测量、数据通信一体化。
电力系统作为一个庞大复杂的系统,各元件之间通过电或磁发生联系,任何元件发生故障都将在不同程度上影响系统的正常运行。继电保护作为电力技术的一环,它对保障电力系统安全运行、提高社会经济效益起到举足轻重的作用。电力系统由于其覆盖的地域极其辽阔、运行环境极其复杂以及各种人为因素的影响,电气故障的发生是不能完全避免的。在电力系统中的任何一处发生事故,都有可能对电力系统的运行产生重大影响,为了确保电力系统的正常运行。必须正确地设置继电保护设备。
5.结语
总之,在电力系统继电保护工作中,只有对继电保护装置进行定期检查和维护,按时巡检其运行状况,及时发现故障并做好处理,保证系统无故障设备正常运行,才能提高供电的可靠性。
参考文献:
[1]李佑光,林东.电力系统继电保护原理及新技术[M].科学出版社,2003.
[2]吴晓梅,邹森元.电力系统继电保护典型保障分析[M].中国电力出版社,2001.
关键词:继电保护技术;电力系统;应用
中图分类号:TM63 文献标识码:A
引言:近年来,随着电子及计算机通信技术的快速发展为继电保护技术的发展注入了新的活力,同时也给继电保护技术不断的提出了新的要求。作为继电保护技术如何才能有效的遏制故障,使电力系统的运行效率及运行质量得到有效的保障,是继电保护工作技术人员需要解决的技术问题。
1.继电保护发展的现状
上世纪60年代到80年代是晶体管继电保护技术蓬勃发展和广泛应用的时期。70年代中期起,基于集成运算放大器的集成电路保护投入研究,到80年代末集成电路保护技术已形成完整系列,并逐渐取代晶体管保护技术,集成电路保护技术的研制、生产、应用的主导地位持续到90年代初。与此同时,我国从70年代末即已开始了计算机继电保护的研究,高等院校和科研院所起着先导的作用,相继研制了不同原理、不同型式的微机保护装置。1984年原东北电力学院研制的输电线路微机保护装置首先通过鉴定,并在系统中获得应用,揭开了我国继电保护发展史上新的一页,为微机保护的推广开辟了道路。在主设备保护方面,关于发电机失磁保护、发电机保护和发电机-变压器组保护、微机线路保护装置、微机相电压补偿方式高频保护、正序故障分量方向高频保护等也相继通过鉴定,至此,不同原理、不同机型的微机线路保护装置为电力系统提供了新一代性能优良、功能齐全、工作可靠的继电保护装置。随着微机保护装置的研究,在微机保护软件、算法等方面也取得了很多理论成果,此时,我国继电保护技术进入了微机保护的时代。
目前,继电保护向计算机化、网络化方向发展,保护、控制、测量、数据通信一体化和人工智能化对继电保护提出了艰巨的任务,也开辟了研究开发的新天地。随着改革开放的不断深入、国民经济的快速发展,电力系统继电保护技术将为我国经济的大发展做出贡献。
2.电力系统继电保护装置的基本要求
(1)速动性。是指保护装置应尽可能快地切除短路故障。缩短切除故障的时间以减轻短路电流对电气设备的损坏程度,加快系统电压的恢复,从而为电气设备的自启动创造了有利条件,同时还提高了发电机并列运行的稳定性。(2)可靠性。保护装置如不能满足可靠性的要求,反而会成为扩大事故或直接造成故障的根源。为确保保护装置动作的可靠性,必须确保保护装置的设计原理、整定计算、安装调试正确无误;同时要求组成保护装置的各元件的质量可靠、运行维护得当、系统简化有效,以提高保护的可靠性。(3)选择性。当供电系统中发生故障时,继电保护装置应能选择性地将故障部分切除。首先断开距离故障点最近的断路器,以保证系统中其它非故障部分能继续正常运行。(4)灵敏性。保护装置灵敏与否一般用灵敏系数来衡量。在继电保护装置的保护范围内,不管短路点的位置如何、不论短路的性质怎样,保护装置均不应产生拒绝动作;但在保护区外发生故障时,又不应该产生错误动作。
3.继电保护技术的配置和运用
3.1继电保护装置的作用继电保护装置在供电系统中具有极其重要的作用,在电力系统发生故障时,必须要通过保护装置将故障及时排除,以防发生更大的故障。当电力设备处于具有危害性的不正常的工作状态时,保护装置必须及时发出警报信号报知给工作人员,以便其及时消除不正常的工作状态,防止电力设备和元器件发生损害,从而导致电力事故的发生。
3.2继电保护装置的基本原理
电力系统发生短路故障以后,电流会骤增,电压会骤降,电路测量阻抗会减小,电流和电压之间的相位角会发生变化,这些参数的变化能构成原理不同的继电保护,比如电流增大会构成过电流、电流阻断保护;电压降低会构成低电压保护。
3.3继电保护装置的运用
工厂和企业的高压供电系统和变电站都会运用到继电保护装置。在高压供电系统分母线继电保护的应用中,分段母线不并列运行时装设的是电流速断保护和过电流保护,但是在断路器合闸的瞬间才会投入,合闸后就会自动解除。配电所的负荷等级如果较低,就可以不装设保护装置。变电站常见的继电保护装置有线路保护、母联保护、电容器保护、主变保护等。
(1)线路保护,通常采用二段式或者三段式的电流保护。其中一段是电流速断保护,二段是限时电流速断保护,三段是过电流保护。(2)母联保护 ,限时电流保护装置联同过电流保护装置一起装设。(3)电容器保护,包括过流保护、过压保护、零序电压保护和失压保护。(4)主变保护,包括主保护 (重瓦斯保护、差动保护),后备保护(复合电压过负荷保护、过流保护)继电保护技术在目前已经得到飞速的发展,各种各样的微机保护装置正逐渐被投入使用,微机保护装置是有各种不同,但是其基本原理和目的都是一样的。
4.电力系统继电保护发展趋势
4.1网络化发展趋势
计算机网络作为信息和数据通信工具已成为信息时代的技术支柱,使人类生产和社会生活的面貌发生了根本变化,它深刻影响着各个工业领域并为之提供了强有力的通信手段。多年来,继电保护的作用也只限于切除故障元件、缩小事故影响范围,这主要是由于缺乏强有力的數据通信手段。随着电力系统发展的要求及通信技术在继电保护领域应用的深入,继电保护的作用不只限于切除故障元件和限制事故影响范围 ( 这是首要任务) ,还要保证全系统的安全稳定运行。这就要求每个保护单元都能共享全系统运行状态和故障信息的数据,各个保护单元与重合闸装置在分析这些信息和数据的基础上协调动作,确保系统的安全稳定运行。显然,实现这种系统保护的基本条件是将全系统各主要设备的保护装置用计算机网络连接起来,亦即实现微机保护装置的网络化。实现保护装置的计算机联网将使保护装置能够得到更多的系统故障信息,提高对电力系统故障性质、故障位置判断和故障测距的准确性。总之,微机保护装置网络化可大大提高继电保护的性能及可靠性,是微机保护发展的必然趋势。
4.2继电保护智能化
智能化进入20世纪90年代以来,人工智能技术如神经网络、遗传算法、进化规划、模糊逻辑等在电力系统各个领域都得到了应用,电力系统继电保护领域内的一些研究工作也转向人工智能的研究。专家系统、人工神经网络等逐步应用于电力系统继电保护中,为继电保护的发展注入了新的活力。人工神经网络具有分布式存储信息、并行处理、自组织、自学习等特点,其应用研究发展十分迅速,目前主要集中在人工智能、信息处理、自动控制和非线性优化等问题的研究。结合人工智能技术,分析不确定因素对智能诊断系统的影响,而提高诊断的准确率,是今后智能诊断发展的方向。
4.3控制、保护、数据通信、测量一体化
在实现继电保护的计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络上的一个智能终端。它可以从网络上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,亦即实现保护、测量、数据通信一体化。
电力系统作为一个庞大复杂的系统,各元件之间通过电或磁发生联系,任何元件发生故障都将在不同程度上影响系统的正常运行。继电保护作为电力技术的一环,它对保障电力系统安全运行、提高社会经济效益起到举足轻重的作用。电力系统由于其覆盖的地域极其辽阔、运行环境极其复杂以及各种人为因素的影响,电气故障的发生是不能完全避免的。在电力系统中的任何一处发生事故,都有可能对电力系统的运行产生重大影响,为了确保电力系统的正常运行。必须正确地设置继电保护设备。
5.结语
总之,在电力系统继电保护工作中,只有对继电保护装置进行定期检查和维护,按时巡检其运行状况,及时发现故障并做好处理,保证系统无故障设备正常运行,才能提高供电的可靠性。
参考文献:
[1]李佑光,林东.电力系统继电保护原理及新技术[M].科学出版社,2003.
[2]吴晓梅,邹森元.电力系统继电保护典型保障分析[M].中国电力出版社,2001.