论文部分内容阅读
采用改进的氧化沉淀法在羧甲基纤维素(CMC)体系中制备了以磁性纳米Fe3O4为核心,外层包覆羧甲基纤维素的复合磁性纳米材料.用透射电镜、X射线衍射、红外光谱、Zeta电位和震动样品磁强计对复合纳米Fe3O4进行了表面形貌、结构和磁学的表征.在此基础上研究了复合纳米Fe3O4对Cu2+的吸附性能,探讨了溶液pH、反应时间和Cu2+的初始浓度对其吸附性能的影响.实验结果表明,复合Fe3O4粒子为反尖晶石型,平均粒径在40nm左右,羧甲基纤维素在Fe3O4粒子表面是化学吸附,复合Fe3O4粒子的饱和磁化强度为36.74emu/g,在中性溶液中Cu2+的吸附量最高,吸附平衡时间为1.5h,二级动力学模型能够很好地拟合吸附动力学数据,吸附等温数据符合Langmuir模型.复合纳米Fe3O4对Cu2+的吸附机理主要为表面配位反应。
The composite magnetic nanomaterials coated with carboxymethylcellulose with magnetic nano-Fe3O4 as the core and carboxymethylcellulose as the core were prepared by the improved oxidative precipitation method in the carboxymethyl cellulose (CMC) system.Using transmission electron microscopy, X-ray diffraction, Zeta potential and vibrating sample magnetometer were used to characterize the surface morphology, structure and magnetism of composite Fe3O4 nanocomposites. The adsorption properties of composite nanometer Fe3O4 on Cu2 + were studied. The effects of pH, reaction time and Cu2 + initial concentration on the adsorption performance of the experimental results show that the composite Fe3O4 particles of anti spinel type, the average particle size of about 40nm, carboxymethyl cellulose in the Fe3O4 particle surface chemical adsorption, composite Fe3O4 particle saturation The magnetization is 36.74emu / g, the adsorption capacity of Cu2 + is the highest in neutral solution, the adsorption equilibrium time is 1.5h, the second-order kinetic model can well fit the adsorption kinetics data and the adsorption isotherm data accord with the Langmuir model. The adsorption mechanism of nano-Fe3O4 on Cu2 + is mainly surface coordination reaction.