论文部分内容阅读
Fishes are famous for their ability to position themselves accurately even in turbulent flows. This ability is the result of the coordinated movement of fins which extend from the body. We have embarked on a research program designed to develop an agile and high efficient biologically inspired robotic fish based on the performance of hybrid mechanical fins. To accomplish this goal, a mechanical ray-like fin actuated by Shape Memory Alloy (SMA) is developed, which can realize both oscillatory locomotion and undulatory locomotion. We first give a brief introduction on the mechanical structure of our fin and then carry out theoretic analysis on force generation. Detailed information of these theoretical results is later revealed by Computational Fluid Dynamic (CFD), and is final validated by experiments. This robotic fin has potential application as a propulsor for future underwater vehicles in addition to being a valuable scientific instrument.
Fishes are famous for their ability to position itself accurately even in turbulent flows. This ability is the result of the coordinated movement of fins which extend from the body. We have embarked on a research program designed to develop an agile and high efficient biologically inspired robotic fish based on the performance of hybrid mechanical fins. To accomplish this goal, a mechanical ray-like fin actuated by Shape Memory Alloy (SMA) is developed, which can realize both oscillatory locomotion and undulatory locomotion. We first give a brief introduction on the mechanical structure of our fin and then carry out theoretic analysis on force generation. Detailed information of these theoretical results is later revealed by Computational Fluid Dynamic (CFD), and is final validated by experiments. This robotic fin has potential application as a propulsor for future underwater vehicles in addition to being a valuable scientific instrument