论文部分内容阅读
The layout effects and optimization of runoff storage and filtration facilities are crucial to the efficiency and management of the cost of runoff control, but related research is still lacking. In this study, scenarios with different layouts were simulated using the storm water management model(SWMM), to investigate the layout effects on control efficiency with different precipitations. In a rainfall event with 50 mm of precipitation in two hours, 1820 scenarios with different layouts of four facilities constructed in 16 sub-catchments were simulated, the reduction rates of internal flow presented a standard deviation of 10.9%, and the difference between the maximum and minimum reduction rates reached59.7%. Based on weighting analysis, an integrated ranking index was obtained and used to determine the optimal layout scenarios considering different rainfall events. In the optimal scenario(storage and filtration facilities constructed in sub-catchments 14, 12, 7, and 2), the reduction rates of the total outflow reached 31.4%, 26.4%, and 14.7%, respectively, with 30, 50, and 80 mm of precipitation. The reduction rate of the internal outflow reached 95% with 50 mm of precipitation and approximately 56% with 80 mm of precipitation.
The layout effects and optimization of runoff storage and filtration facilities are crucial to the efficiency and management of the cost of runoff control, but related research is still lacking.. In this study, scenarios with different layouts were simulated using the storm water management model (SWMM ) to investigate the layout effects on control efficiency with different precipitations. In a rainfall event with 50 mm of precipitation in two hours, 1820 scenarios with different layouts of four submersions in 16 sub-catchments were simulated, the reduction rates of internal flow Based on weighting analysis, an integrated ranking index was obtained and used to determine the optimal layout scenarios considering different rainfall events. In the optimal scenario (storage and filtration facilities constructed in sub-catchments 14, 12, 7, and 2), the reduction r ates of the total outflow reached 31.4%, 26.4%, and 14.7%, respectively, with 30, 50, and 80 mm of precipitation. The reduction rate of the internal outflow reached 95% with 50 mm of precipitation and approximately 56% with 80 mm of precipitation.