论文部分内容阅读
特征数据集的属性约简是机械故障智能诊断的关键步骤之一。目前利用粗糙集理论从大量的且含有噪声、非线性、非平稳信号的故障数据集中提取出有用特征信息是一件值得研究的事情。针对原始故障数据集直接离散化会导致一些关键属性丢失以及时域内分析不能有效获取故障本质的问题,提出了一种以频域内的频谱值为条件属性,以故障类别为决策属性建立邻域粗糙集决策表对数据集进行属性约简的方法。通过处理转子实验台数据对该方法进行验证和对比,结果表明该方法能有效地获得典型故障的关键属性和更加准确的决策规则。