论文部分内容阅读
单一特征的模型对于颜色纹理变化较大的目标的检测往往存在检测率不高或检测速度慢的缺点.本文提出了一种基于级联Adaboost的"级联-加和"融合算法.融合模型由两个独立训练得到的级联Adaboost分类器组成,分别利用边界片段特征和矩形类Haar小波特征描述整个目标以及目标的一个稳定部件.级联-加和的融合决策以样本在两个分类器中被拒绝或通过的级数信息为依据.在多个数据库上的实验证明这种融合检测算法不仅综合了Haar小波特征检测速度快和边界片段特征鲁棒性好的优点,而且与单一特征的分类器相比,检测性能也有所提高.