论文部分内容阅读
实时、准确的交通量预测是实现动态交通流控制及诱导的前提和基础.为了更准确地对其进行预测,本文建立了遗传神经网络优化模型,该模型既利用遗传算法全局搜索、快速收敛的优点,又利用神经网络非线性描述、自学习自适应的优点.并以实际道路为例,给出了具体的应用方法,计算机仿真结果表明该模型精度较高、具有可行性.