论文部分内容阅读
以广西北部湾为研究区,针对潮位周期性变化导致稀疏低矮红树林难以被准确提取问题,基于多潮位Landsat8 OLI图像和数字高程模型(DEM)数据,通过构建红树林识别决策树模型,并以支持向量机(SVM)为对照,评价结合潮位和DEM信息的决策树法提取红树林信息的可行性。研究结果表明:1)不同高度、密度红树林之间光谱以及不同潮位时红树林光谱差异均较大,稀疏低矮红树林也与阴坡林地、水体-陆生植被混合像元光谱存在严重“异物同谱”效应;2)无论是基于低潮位、高潮位图像,还是多潮位图像,在SVM中将细分为高密红树林和稀矮红树林,其总体精度(分为红树林和非红树林两类)可分别提高4.65、4.41和7.22个百分点;3)基于多潮位图像及DEM的决策树模型识别的总体精度和Kappa系数分别为98.80%和0.973,比SVM中最佳值分别高出1.62个百分点和0.035。因此,通过同时考虑红树林高度密度、潮位和DEM等特征,可明显提高红树林遥感识别的精度。