论文部分内容阅读
为了更准确地得到符合车辆形态学特征的初始候选框,提出一种基于改进的Faster R-CNN模型的车辆检测算法.首先提取目标框的人工标注坐标值,得到标注框的宽度和高度,然后利用K-means算法对所有框的宽高值进行聚类,得出聚类中心点坐标值后,重新设置RPN的锚盒尺寸及比例,对Faster R-CNN算法的3种尺寸和3种比例加以改进.最后选择轿车、SUV、客车和货车4种车型车辆数据,对改进前后的Faster R-CNN模型进行训练,比较改进前后的模型在车辆检测及车型识别任务中的表现.实验结果表明,使用