论文部分内容阅读
在传统的微粒群优化算法的基础上,提出了一种基于动态Pareto解集的求解多目标规划问题的方法。Pareto解集在每次迭代过程中进行动态更新和信息共享,在加入新产生的Pareto近似最优解同时去除解集中已经不是Pareto解的数据,每个个体随机地与Pareto解集中的结果进行信息交换,从而保证在快速找到Pareto解的同时保持多样性。并通过三个标准的测试函数证明了算法的有效性。