论文部分内容阅读
为提高Web资源推荐的准确度,提出基于本体的Web资源个性化推荐算法(BO-RM)。设计Web资源主题抽取算法和相似性度量方法,利用本体语义推理机制实现资源聚类,在推荐过程中通过实时分析用户浏览行为捕获用户个性化偏好的变化,动态实时推荐内容。与基于情境的协同过滤算法(CFR-RM)和基于模型的个性化预测算法(BM-RM)进行对比,结果显示BO-RM的时间开销相对稳定,在平均排序倒数(MRR)和平均准确率(MAP)上均取得了较好的效果。实验结果表明:BO-RM离线完成海量Web资源的分析聚类,有效提高