论文部分内容阅读
浙江大学高分子系高超教授团队研发出一种高导热超柔性石墨烯组装膜,导热率接近理想单层石墨烯导热率的40%,可反复折叠6000次、弯曲10万次,有望应用在电子元件导热、新一代柔性电子器件及航空航天等领域。这一成果日前发表于《先进材料》(Advanced Materials)杂志。
现有的宏观材料中,高导热和高柔性是一对矛盾,往往难以兼得。石墨烯材料的出现虽然为解决这一矛盾提供了理论上的可能,但此前并没有研究团队能实现突破。
高超团队创造性地提出“大片微褶皱”的材料制备方法:首先将大片单层石墨烯互相交叠,经高温热处理后,材料中的含氧基团释放出气体,在材料内部形成微气囊,最后降温并用机械辊压成膜,令气囊的气体排出形成微褶皱。
在外力作用下,石墨烯膜上的微褶皱会产生弹性变形,外力越大,形变也就越明显。实验數据表明,相较于传统石墨膜材料,石墨烯膜的断裂伸长率提高了2至3倍。
研究人员介绍,石墨烯微褶皱的可延展性,使它可以耐受反复折叠、打结、扭曲、弯曲、折纸等多种复杂形变,也更适合工业规模化生产。具备高柔性的石墨烯膜还具有优异的导热导电性能。实际上,石墨烯膜的导热率超过了目前市面上宏观材料的导热率,平均值达到1900瓦/米·度。
研究人员介绍,电子元器件核心部件都有各自的稳定工作温度区间,一般而言,温度提高8℃至10℃,电子器件寿命会降低一半。在实验中,研究人员将这种石墨烯膜替代商用石墨膜,应用于手机散热膜上,发现手机CPU处的温度可以控制在33℃以下,相较商用石墨膜降低了6℃。(新华网)
现有的宏观材料中,高导热和高柔性是一对矛盾,往往难以兼得。石墨烯材料的出现虽然为解决这一矛盾提供了理论上的可能,但此前并没有研究团队能实现突破。
高超团队创造性地提出“大片微褶皱”的材料制备方法:首先将大片单层石墨烯互相交叠,经高温热处理后,材料中的含氧基团释放出气体,在材料内部形成微气囊,最后降温并用机械辊压成膜,令气囊的气体排出形成微褶皱。
在外力作用下,石墨烯膜上的微褶皱会产生弹性变形,外力越大,形变也就越明显。实验數据表明,相较于传统石墨膜材料,石墨烯膜的断裂伸长率提高了2至3倍。
研究人员介绍,石墨烯微褶皱的可延展性,使它可以耐受反复折叠、打结、扭曲、弯曲、折纸等多种复杂形变,也更适合工业规模化生产。具备高柔性的石墨烯膜还具有优异的导热导电性能。实际上,石墨烯膜的导热率超过了目前市面上宏观材料的导热率,平均值达到1900瓦/米·度。
研究人员介绍,电子元器件核心部件都有各自的稳定工作温度区间,一般而言,温度提高8℃至10℃,电子器件寿命会降低一半。在实验中,研究人员将这种石墨烯膜替代商用石墨膜,应用于手机散热膜上,发现手机CPU处的温度可以控制在33℃以下,相较商用石墨膜降低了6℃。(新华网)