论文部分内容阅读
针对目前缺少大型公开已标记的青光眼数据集,为了解决小样本学习能力不足、分类精度低等问题,提出一套基于迁移学习的青光眼眼底图像识别系统。对获取的青光眼眼底图像进行去噪、删除多余背景、提取感兴趣区域(ROI)、图像增强等预处理操作。在VGG16网络的基础上,对全连接层进行重新设计,得到一个简化的深度神经网络模型Reduce-VGGNet(R-VGGNet)。R-VGGNet网络在训练过程中,其卷积层与池化层继承VGG16模型在ImageNet数据集上预训练得到权值参数,全连接层的参数则根据青光眼数据集进