论文部分内容阅读
特征评价和选择是机器学习和模式识别的重要步骤。为了获得稀疏特征子集,结合间隔损失评估策略和L1范数调节技术来获得一种有效的特征选择方法(MLFWL-L1),并将其应用到RBFSVM分类器。实验中,在UCI数据集上将提出的算法与Simba和ReliefF对比表明,验证所提出的算法是一种有效的特征选择方法。