论文部分内容阅读
基于协同表示的分类(CRC)以其卓越的协同能力成为人脸分类领域的一个突破。然而在实际应用中,通常只提供很少甚至是单个人脸图像来进行人脸识别,这导致了CRC无法很好地处理光照、表情、姿态和遮挡等问题。针对该问题,提出一种判别性双向协同表示的图像识别算法(DB-CRC)。首先通过引入判别式字典学习(FDDL)模型学习得到一个结构化字典,使得每个特定类的子字典对相关类的样本具有良好的表示能力,由此,较大的类间离散度和较小的类内离散度使得重构误差和编码系数都具有判别性;然后将学习得到的稀疏编码系数作为测试样