论文部分内容阅读
为了提高网络大数据计算的速度和收敛性,针对当前仿生群算法容易出现局部收敛的问题,提出一种基于优化粒子群智能信息处理的网络大数据计算方法。采用特征尺度标识方法进行网络计算数据集规范化处理,结合粒子群算法进行网络计算的大数据聚类分析,根据粒子速度和位置更新迭代公式确定初始聚类中心,通过混沌差分扰动进行个体寻优,降低群体适应度方差,使得计算程序满足收敛法则,提高网络计算的效率。仿真结果表明,采用该方法进行网络大数据的智能计算能得到最优适应度值,收敛性和处理速度都具有优势。