论文部分内容阅读
Hydrogen adsorption experiments were carried out in special stainless steel vessels at room temperature (298K) and under 10 MPa using self-synthesized multi-walled carbon nanotubes. In the experiments, carbon nanotubessynthesized by the seeded catalyst method were pretreatedby being soaked in chemical reagents or annealed at hightemperature before they were used to adsorb hydrogen, but their capacity for hydrogen storage was still poor. Carbonnanotubes synthesized by the floating catalyst method were found to be able to adsorb more hydrogen. They have ahydrogen storage capacity of over 4% after they wereannealed at high temperatures, which suggested that theycould be used as a promising material for hydrogen storage.
Hydrogen adsorption experiments were carried out in special stainless steel vessels at room temperature (298K) and under 10 MPa using self-synthesized multi-walled carbon nanotubes. In the experiments, carbon nanotubes synthesized by the seeded catalyst method were pretreated by being soaked in chemical reagents or annealed at hightemperature before they were used to adsorb hydrogen, but their capacity for hydrogen storage was still poor. They have a hydrogen storage capacity of over 4% after they wereannealed at high temperatures, which suggested that theycould be used as a promising material for hydrogen storage.