论文部分内容阅读
在执行视频行人重识别任务时,传统基于局部的方法主要集中于具有特定预定义语义的区域学习局部特征表示,在复杂场景下的学习效率和鲁棒性较差。通过结合全局特征和局部特征提出一种基于时空关注区域的视频行人重识别方法。将跨帧聚合的关注区域特征与全局特征进行融合得到视频级特征表示,利用快慢网络中的两个路径分别提取全局特征和关注区域特征。在快路径中,利用多重空间关注模型提取关注区域特征,利用时间聚合模型聚合所有采样帧相同部位的关注区域特征。在慢路径中,利用卷积神经网络提取全局特征。在此基础上,使用亲和度矩阵和定位参