论文部分内容阅读
,A PRIORI ERROR ESTIMATES FOR LEAST-SQUARES MIXED FINITE ELEMENT APPROXIMATION OF ELLIPTIC OPTIMAL C
【机 构】
:
College of Science, China University of Petroleum, Qingdao 266580, China“,”School of Mathematics, Sh
【出 处】
:
计算数学(英文版)
【发表日期】
:
2015年2期
其他文献
The elementary analysis of this paper presents explicit expressions of the constants in the a priori error estimates for the lowest-order Courant,Crouzeix-Ravia
In this paper, we study the strong stability preserving (SSP) property of a class of deferred correction time discretization methods, for solving the method-of-
,COUPLING OF FINITE ELEMENT AND BOUNDARY ELEMENT METHODS FOR THE SCATTERING BY PERIODIC CHIRAL STRUC
Consider a time-harmonic electromagnetic plane wave incident on a biperiodic structure in R3. The periodic structure separates two homogeneous regions. The medi
,A POSTERIORI ERROR ESTIMATES FOR FINITE ELEMENT APPROXIMATIONS OF THE CAHN-HILLIARD EQUATION AND TH
This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equat
“新闻文化学是一片等待着我们去开拓和耕耘的处女地”——这是90岁的“世纪老人”夏衍为1990年3月11日在北京举行的中国新闻文化促进会和中国管理科学院新闻文化所联合举行
A monotone compact implicit finite difference scheme with fourth-order accuracy in space and second-order in time is proposed for solving nonlinear reaction-dif