论文部分内容阅读
The study was conducted to make clear the activity of azoxystrobin to 4 plant pathogens and the synergistic effects of salicylhydroxamic acid (SHAM), which acted on the alternative oxidase. It was also conducted to be aware of the mechanism of azoxystrobin in inhibition on mycelial respiration and the influence of SHAM. The activity test of azoxystrobin and SHAM was carried out with a mycelial linear growth test and spore germination test. Other related biological properties were also observed. Inhibition of azoxystrobin and SHAM on 4 pathogens was determined by using SP-II oxygraph system. Azoxystrobin inhibited mycelial growth in Colletotrichum capsici, Botrytis cinerea, Rhizoctonia solani, and Magnaporthe grisea, respectively; it also inhibited conidia germination, and conidia production in C. capsici, B. cinerea M. grisea, and sclerotia formation in R. solani. Moreover, it created stayed pigment biosynthesis in C. capsici and M. grisea somehow. Salicylhydroxamic acid enhanced inhibition by azoxystrobin. An oxygen consuming test of the mycelia showed that azoxystrobin inhibited all the 4 fungi’s respiration in the early stages. With the concentration rising up, the effectiveness increased. However, as time went on, the respiration of the mycelia treated with fungicides recovered and SHAM could not inhibit the oxygen consuming. This reaction between the mycelia and the fungicides appeared not to initiate alternative respiration but rather the other mechanism created a lack of efficacy.
The study was conducted to make clear the activity of azoxystrobin to 4 plant pathogens and the synergistic effects of salicylhydroxamic acid (SHAM), which acted on the alternative oxidase. It was also conducted to be aware of the mechanism of azoxystrobin in inhibition on mycelial respiration and the influence of SHAM. The activity test of azoxystrobin and SHAM was carried out with a mycelial linear growth test and spore germination test. Other related biological properties were also observed. Inhibition of azoxystrobin and SHAM on 4 pathogens was determined by using SP-II oxygraph system. Azoxystrobin inhibited mycelial growth in Colletotrichum capsici, Botrytis cinerea, Rhizoctonia solani, and Magnaporthe grisea, respectively; it also inhibited conidia germination, and conidia production in C. capsici, B. cinerea M. grisea, and sclerotia formation in R. solani. Moreover, it has been produced in pigment biosynthesis in C. capsici and M. grisea somehow. Salicylhydroxamic acid enhanced inhib ition by azoxystrobin. An oxygen consumption test of the mycelia showed that azoxystrobin inhibited all the 4 fungi’s respiration in the early stages. With the concentration rising up, the effectiveness increased. However, as time went on, the respiration of the mycelia treated with fungicides recovered and SHAM could not inhibit the oxygen consuming. This reaction between the mycelia and the fungicides was not to toggle