论文部分内容阅读
基于LMS的标准BP算法收敛速度极慢,而共轭梯度法要求精确的线性搜索,这在神经网络的高维权空间中是难以实现的。本文提出了一种新的BP学习算法,它采用一种对线性搜索要求不高的改进的共轭梯度法与一种简单的不精确线性搜索相结合,极大地提高了BP学习速度。经多次测试表明,与标准BP算法相比,该算法的效率提高了二个数量极。