论文部分内容阅读
传统压缩跟踪算法使用固定学习率更新特征分布,导致跟踪易受遮挡影响且鲁棒性较低。为此,提出一种可自动调节特征分布学习率的压缩跟踪算法。利用压缩感知理论得到样本的压缩域特征并计算其在正负类中的特征分布,结合两帧之间特征分布重叠度和正类更新阈值自适应更新特征分布,通过样本分类实现目标跟踪。在此基础上,利用相邻两帧目标改进的SIFT特征求解目标尺度变化,使跟踪窗口随目标变化实时更新。实验结果表明,该算法可有效抵抗遮挡、光线、尺度等因素对跟踪的干扰,具有较高的准确性、鲁棒性以及实时性。