论文部分内容阅读
词向量表示是机器学习的基础性工作,其目标是以优化的向量表示词,以便计算机能更好地理解自然语言。随着神经网络技术的发展,词向量在自然语言处理领域发挥着重要作用。藏文词向量表示技术的研究对藏文特征分析以及用深度学习技术处理藏文具有重要意义。该文提出了一种构件、字和词多基元联合训练的藏文词向量表示方法,设计了多基元联合训练藏文词向量的模型TCCWE,并采用内部评测中的词相似度/相关性评价方式验证了其有效性。实验表明,该文提出的藏文词向量表示方法有效,其性能在TWordSim215上提高了3.35%,在TWord