论文部分内容阅读
应用近红外光谱分析技术结合化学计量学方法,建立了奶粉脂肪和蛋白质含量测定的化学计量学建模新方法.首先采用Kernard-Stone法对校正集样本和预测集样本进行分类,然后利用小波变换滤波技术对样品的近红外光谱进行压缩去噪处理,结合滤波后重构光谱信号建立脂肪和蛋白质的径向基神经网络回归模型,并分别对径向基网络的扩散常数spread值及小波变换中的小波基与压缩尺度三个参数进行了详细的讨论.脂肪模型在小波基为db2及小波尺度为4、spread值为3.5时的预测模型精度最好;蛋白质模型在小波基为db8及小波尺度为