论文部分内容阅读
目前,基于深度学习的骨龄分类方法一般采用全手图像作为输入,或者通过标注额外的边界框或关键点来挖掘局部信息。针对全手图像骨龄评估方法容易丢失局部细节信息的问题,提出一种利用腕骨区域特征的骨龄评估方法,该方法将手腕骨的腕关节区域图像作为研究对象,在仅使用单区域图像标注的前提下,利用细粒度识别模型中局部关注和判别细微差异的能力进行骨龄评估。为了提高骨龄评估的精确度,对细粒度识别网络B-CNN(Bilinear CNN)进行改进,在其基础特征提取网络中加入融合了残差结构和注意力机制的特征学习网络,并且根据骨