论文部分内容阅读
在复杂的不确定环境里,采用单一传感器对机器人进行定位时精度较低,并且易受干扰,可靠性较差。针对这一问题在粒子滤波器移动机器人SLAM算法的基础上,利用多传感器融合对算法进行改进,将观测信息进行特征级融合,充分利用各种传感器采集的冗余信息,并将融合后的观测信息分别用来估计机器人路径和环境特征的后验概率分布。仿真试验表明,改进后的算法在SLAM定位精度及可靠性上都有较大的提高,证明了该种方法的可行性。