论文部分内容阅读
针对非线性系统建模问题,提出了一类由函数逼近和规则推理网络构成的复合型模糊神经网络,其规则网络基于过程先验知识用于对操作区间的划分,而函数网络采用改进型模糊神经网络结构完成非线性函数逼近。采用一类非线性函数模型进行了仿真研究,结果表明,复合型模糊神经网络较之普通模糊神经网络在建模收敛速度和预测精度等方面都有较大的改善。