【摘 要】
:
发展微焦点高能X射线源技术是实现高精度高能工业CT突破的关键,基于激光尾波加速驱动高能轫致辐射源开展了微焦点高能X射线源产生以及对涡轮叶片高能CT成像研究。利用一台20 TW钛蓝宝石超快超强激光器,通过电离注入的方式获得了(140±44)pC的高能电子束,并使用1.5 mm厚钨靶产生了累积源尺寸为25μm的高能轫致辐射X射线。利用该微焦点高能X射线源,采用基于压缩感知的CT重建算法,在获取较少角度投影(31个角度)的情况下,获得了对涡轮叶片叶榫结构的CT重建。
【机 构】
:
清华大学工程物理系,北京量子信息科学研究院技术与产业开发中心
论文部分内容阅读
发展微焦点高能X射线源技术是实现高精度高能工业CT突破的关键,基于激光尾波加速驱动高能轫致辐射源开展了微焦点高能X射线源产生以及对涡轮叶片高能CT成像研究。利用一台20 TW钛蓝宝石超快超强激光器,通过电离注入的方式获得了(140±44)pC的高能电子束,并使用1.5 mm厚钨靶产生了累积源尺寸为25μm的高能轫致辐射X射线。利用该微焦点高能X射线源,采用基于压缩感知的CT重建算法,在获取较少角度投影(31个角度)的情况下,获得了对涡轮叶片叶榫结构的CT重建。
其他文献
以实现GW级高功率微波源长时间稳定运行为目标,利用应用电子学研究所小型化Marx型脉冲功率源平台开展了L波段六腔衍射输出相对论磁控管长时间稳定运行实验研究。首先介绍了L波段六腔衍射输出相对论磁控管基本结构及长时间稳定运行实验装置基本情况,接着给出了测试系统布局及各参数测试方法,最后给出了实验研究结果:所研制的L波段衍射输出相对论磁控管在输出功率大于1 GW、重复频率10 Hz的条件下实现了超过55 min的长时间稳定运行,输出微波模式稳定,无竞争模式出现,中心频率为1.57 GHz。
根据高功率半导体激光器对大功率、低纹波、高可靠性恒流源驱动源的需求,设计了基于4个BUCK模块并联交错输出的恒流电源,最大输出功率37.5 kW(250 V×150 A)。4个模块导通时间依次间隔T/4使模块间的纹波抵消降低,实现输出电流纹波率0.066%。利用FPGA并行优势快速响应输出保护,在12.2μs内即可关断输出,保护优异。测试结果验证了设计,目前已成功应用于某项目中。
传统测量光束时间相干性的方法是通过机械扫描的方式实现的,这种方法不能够实现单次测量,而且对于相干时间较短的宽带光测量误差较大。本文提出了一种单次时间相干性测量的新方法,通过给迈克尔逊干涉仪的反射镜引入楔角,使光束波前产生随位置变化的延迟差,可从单次测量的一幅干涉图中计算提取出光场完整的时间相干性信息。实验中测量了不同宽带入射光的时间相干性,均与理论结果吻合较好。单次时间相干性测量的方法将为高功率宽带激光装置提供更为方便的时间相干性测量手段,提高实验测量效率。
针对大范围空间模拟强场电磁环境进行辐射效应试验难度大以及现有大电流注入(BCI)技术应用于非线性系统试验存在空白的问题,开展了屏蔽线耦合通道BCI等效替代辐照试验方法研究。以受试设备响应相等作为等效依据,建立了辐照法和注入法两种条件下受试设备响应的分析模型,推导出了注入激励源电压与辐照场强之间的等效对应关系,提出了BCI等效替代辐照的条件和试验方法,并进行了试验验证。研究结果表明,BCI方法是可以精确等效受试设备的辐照效应试验,试验误差不超过2 dB,能够满足工程的实际需求。
为研究不同结构参数与来流参数下变截面超-超引射器的启动特性,用于指导超-超引射器设计与工况调试,采用二维雷诺平均Naiver-Stokes方程,数值研究了引射器混合室不同收缩比、一次流和二次流的不同总压比、总温比下超-超引射器的启动规律,并定义了“启动系数”来判别超-超引射流场是否建立。研究结果表明:随着收缩比(范围0.7~0.9)的增加,超-超引射器启动的临界总压比、总温比均先降低后升高,收缩比0.8时,存在最佳总压比5.88,最佳总温比0.21。结构参数一定,超-超引射器随总温比升高启动难度增加。当超
以能量平衡方程为基础,采用不同的电导率唯象模型描述了液相放电等离子体圆柱形通道特性,得到了通道内半径、温度、电阻、电流和耗散能量随时间的变化关系,还给出了距离放电间隙中心一定距离处的冲击波压力变化,并与前人利用等离子体通道球状模型计算得到的结果进行了比较。结果表明:把等离子体通道看成球状和看成圆柱状在描述通道压力和通道半径时差异显著,而在描述其他物理特性时差别不大;三种电导率模型在描述等离子体通道物理特性时,变化趋势大体相同,而在描述激波特性时,电导率模型σ2更符合实际;通过对比电学参数与压力参数的变化,