论文部分内容阅读
【摘要】概念是最基本的思维形式。数学中的命题,都是由概念构成的,数学中的推理和证明,也是由命题构成的。可见,数学概念是数学学科知识体系的基础,是数学学习能力根基之一。因此。抓好数学概念的教学,是提高数学教学质量的关键。数学概念比较抽象,初中学生由于年龄、生活经验和智力发展等方面的限制,要接受教材中的所有概念是不容易的。
【关键词】概念教学 实际问题 数学实验 学习兴趣
【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2017)46-0144-01
一、利用具体生活实例引入概念
概念属于理性认识,它的形成依赖于感性認识,学生的心理特点是容易理解和接受具体的感性认识。教学过程中,各种形式的直观教学是提供丰富、正确的感性认识的主要途径。所以在讲述新概念时,从引导学生观察和分析有关具体实物人手,比较容易揭示概念的本质和特征。例如:在讲合并同类项时,一些教师只知结合教材,判断课后哪些是同类项,哪些不是,再怎么样合并同类项。实际上,我们在讲完同类项知识时,可这样提问启发:生活中大家看到哪些地方存在同类项情形?教师再提这样的问题:40人与30元为什么不能加在一起?40元与30元为什么能够相加?通过这一系列的讨论、交流,学生能更直观地理解同类项的知识,并且对数学也逐渐有兴趣了。
二、注重概念的形成过程
许多数学概念都是从现实生活中抽象出来的。讲清它们的来源,既会让学生感到不抽象,而且有利于形成生动活泼的学习氛围。一般说来,概念的形成过程包括:引入概念的必要性,对一些感性材料的认识、分析、抽象和概括,注重概念形成过程,符合学生的认识规律。在教学过程中,如果忽视概念的形成过程,把形成概念的生动过程变为简单的“条文加例题”,就不利于学生对概念的理解。因此,注重概念的形成过程,可以完整地、本质地、内在地揭示概念的本质属性,使学生对理解概念具备思想基础,同时也能培养学生从具体到抽象的思维方法。
三、对教材深入剖析,揭示概念的本质
数学概念是数学思维的基础,要使学生对数学概念有透彻清晰的理解,教师首先要深入剖析概念的实质,帮助学生弄清一个概念的内涵与外延。也就是从质和量两个方面来明确概念所反映的对象。本学期我校组织老师们听笔者讲一节公开课活动,笔者选择了北师大版《同底数幂的乘法》这节课。在对教材的处理,教学内容的衔接和教学语言的组织上,紧扣概念,上这节课之前笔者一直在想,怎样充分利用教材中现有教学内容来挖掘教材中隐含的知识点,于是对教学内容进行了重新整合。用自然巧妙的语言进行新的衔接,使知识的形成有水到渠成的感觉。
四、通过变式,突出比较,巩固对概念的理解
巩固是概念教学的重要环节。心理学原理认为:概念一旦获得,如不及时巩固,就会被遗忘。巩固概念,首先应在初步形成概念后,引导学生正确复述。这里绝不是简单地要求学生死记硬背,而是让学生在复述过程中把握概念的重点、要点、本质特征,同时,应注重应用概念的变式练习。恰当运用变式,能使思维不受消极定势的束缚,实现思维方向的灵活转换,使思维呈发散状态。在“有理数的运算”中,有理数的减法是一个难点,这是因为有理数的减法是有一定的综合性。表现在:①减法要转化为加法来做;②与算术数的运算比较,算术数只是单方面的计算,而有理数则扩充到符号和绝对值两方面的运算,这里涉及“转化”、“符号运算”、“绝对值运算”,再加上对题目特点的识别,正是这几方面的“积累误差”,使有理数减法形成了难点,这就需要有一个过渡与适应的过程,在指导学生认识法则合理性的前提下,通过恰当的层次训练和及时反馈使“转化”、“符号运算”、“绝对值运算”各个击破。
五、注重应用,加深对概念的理解,培养学生的数学能力
承上启下,导情引思。应该是那些最基本的对后次的学习起作用的概念,通过这些概念的复习或再学习,自然地过渡到新课。例如:在讲方程的解法时,可设计如下一组复习旧知识的提问:1.什么叫方程,方程的解和解方程?2.你都学过哪些方程?解这些方程的基本思想是什么?主要步骤是什么?3.在解这些方程的过程中,解哪一种方程时必须验根?为什么要进行验根?这组问题,实际上为理解新课作了必要的准备,使得新知识——无理方程和它的解法——成为整个“方程”这段知识整体结构的一个自然发展,使得新知识成为一个容易从旧知识“进入”的“最近发展区”。这样,解无理方程的关键步骤——去根号,可以由解分式方程的关键步骤——去分母进行联想,由去分母可能产生增根,联想到去根号可能产生增根等。
对数学概念的深刻理解,是提高学生解题能力的基础;反之,也只有通过解题,学生才能加深对概念的认识,才能更完整、更深刻地理解和掌握概念的内涵和外延。课本中直接运用概念解题的例子很多,教学中要充分利用。同时,对学生在理解方面易出错误的概念,要设计一些有针对性的题目,通过练习、讲评,使学生对概念的理解更深刻、更透彻。
总之,数学概念教学对整个数学教学起着至关重要的作用,教师在数学概念教学中应努力通过揭示概念的形成、发展、巩固和应用的过程,培养学生的辩证唯物主义观念。完善学生的认知结构,发展学生的思维能力,从而提高数学教学质量。
参考文献:
[1]师朝阳.浅谈初中数学概念教学法[J].教育,2016(9)
[2]周华.浅谈初中数学概念的教学方法[J].中国科教创新导刊,2009(24)
【关键词】概念教学 实际问题 数学实验 学习兴趣
【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2017)46-0144-01
一、利用具体生活实例引入概念
概念属于理性认识,它的形成依赖于感性認识,学生的心理特点是容易理解和接受具体的感性认识。教学过程中,各种形式的直观教学是提供丰富、正确的感性认识的主要途径。所以在讲述新概念时,从引导学生观察和分析有关具体实物人手,比较容易揭示概念的本质和特征。例如:在讲合并同类项时,一些教师只知结合教材,判断课后哪些是同类项,哪些不是,再怎么样合并同类项。实际上,我们在讲完同类项知识时,可这样提问启发:生活中大家看到哪些地方存在同类项情形?教师再提这样的问题:40人与30元为什么不能加在一起?40元与30元为什么能够相加?通过这一系列的讨论、交流,学生能更直观地理解同类项的知识,并且对数学也逐渐有兴趣了。
二、注重概念的形成过程
许多数学概念都是从现实生活中抽象出来的。讲清它们的来源,既会让学生感到不抽象,而且有利于形成生动活泼的学习氛围。一般说来,概念的形成过程包括:引入概念的必要性,对一些感性材料的认识、分析、抽象和概括,注重概念形成过程,符合学生的认识规律。在教学过程中,如果忽视概念的形成过程,把形成概念的生动过程变为简单的“条文加例题”,就不利于学生对概念的理解。因此,注重概念的形成过程,可以完整地、本质地、内在地揭示概念的本质属性,使学生对理解概念具备思想基础,同时也能培养学生从具体到抽象的思维方法。
三、对教材深入剖析,揭示概念的本质
数学概念是数学思维的基础,要使学生对数学概念有透彻清晰的理解,教师首先要深入剖析概念的实质,帮助学生弄清一个概念的内涵与外延。也就是从质和量两个方面来明确概念所反映的对象。本学期我校组织老师们听笔者讲一节公开课活动,笔者选择了北师大版《同底数幂的乘法》这节课。在对教材的处理,教学内容的衔接和教学语言的组织上,紧扣概念,上这节课之前笔者一直在想,怎样充分利用教材中现有教学内容来挖掘教材中隐含的知识点,于是对教学内容进行了重新整合。用自然巧妙的语言进行新的衔接,使知识的形成有水到渠成的感觉。
四、通过变式,突出比较,巩固对概念的理解
巩固是概念教学的重要环节。心理学原理认为:概念一旦获得,如不及时巩固,就会被遗忘。巩固概念,首先应在初步形成概念后,引导学生正确复述。这里绝不是简单地要求学生死记硬背,而是让学生在复述过程中把握概念的重点、要点、本质特征,同时,应注重应用概念的变式练习。恰当运用变式,能使思维不受消极定势的束缚,实现思维方向的灵活转换,使思维呈发散状态。在“有理数的运算”中,有理数的减法是一个难点,这是因为有理数的减法是有一定的综合性。表现在:①减法要转化为加法来做;②与算术数的运算比较,算术数只是单方面的计算,而有理数则扩充到符号和绝对值两方面的运算,这里涉及“转化”、“符号运算”、“绝对值运算”,再加上对题目特点的识别,正是这几方面的“积累误差”,使有理数减法形成了难点,这就需要有一个过渡与适应的过程,在指导学生认识法则合理性的前提下,通过恰当的层次训练和及时反馈使“转化”、“符号运算”、“绝对值运算”各个击破。
五、注重应用,加深对概念的理解,培养学生的数学能力
承上启下,导情引思。应该是那些最基本的对后次的学习起作用的概念,通过这些概念的复习或再学习,自然地过渡到新课。例如:在讲方程的解法时,可设计如下一组复习旧知识的提问:1.什么叫方程,方程的解和解方程?2.你都学过哪些方程?解这些方程的基本思想是什么?主要步骤是什么?3.在解这些方程的过程中,解哪一种方程时必须验根?为什么要进行验根?这组问题,实际上为理解新课作了必要的准备,使得新知识——无理方程和它的解法——成为整个“方程”这段知识整体结构的一个自然发展,使得新知识成为一个容易从旧知识“进入”的“最近发展区”。这样,解无理方程的关键步骤——去根号,可以由解分式方程的关键步骤——去分母进行联想,由去分母可能产生增根,联想到去根号可能产生增根等。
对数学概念的深刻理解,是提高学生解题能力的基础;反之,也只有通过解题,学生才能加深对概念的认识,才能更完整、更深刻地理解和掌握概念的内涵和外延。课本中直接运用概念解题的例子很多,教学中要充分利用。同时,对学生在理解方面易出错误的概念,要设计一些有针对性的题目,通过练习、讲评,使学生对概念的理解更深刻、更透彻。
总之,数学概念教学对整个数学教学起着至关重要的作用,教师在数学概念教学中应努力通过揭示概念的形成、发展、巩固和应用的过程,培养学生的辩证唯物主义观念。完善学生的认知结构,发展学生的思维能力,从而提高数学教学质量。
参考文献:
[1]师朝阳.浅谈初中数学概念教学法[J].教育,2016(9)
[2]周华.浅谈初中数学概念的教学方法[J].中国科教创新导刊,2009(24)