论文部分内容阅读
在阵列信号处理中,极大似然法(ML)对波达方向(DOA)估计有很好的性能,但由于多维非线性搜索的计算复杂,很难应用于工程中。为了降低ML方法的计算复杂度,提出了一种改进人工鱼群算法(AFSA)的声矢量传感器阵列的ML-DOA估计方法。仿真结果表明,与基于遗传算法(GA)、粒子群优化算法(PSO)和微分进化算法(DE)的ML-DOA估计相比,该算法具有更快的收敛速度、更低的RMSE、更低的计算复杂度和更稳定的性能。