论文部分内容阅读
随着石墨烯及其优异性质被发现以来,二维层状材料成为了材料科学领域研究的热点.二维层状材料每个片层内的原子通过化学键连接,片层间以弱范德华力相互堆垛.这种几何结构使得二维层状材料在晶格不匹配和生长方法不兼容的情况下,彼此之间仍然能够相互混合和匹配,从而衍生出很多范德华层间异质结构.这种异质结构利用了不同堆垛材料迥异的物理和化学性质,在电子、光电子器件、可再生能源储存和转化等领域得到了广泛的应用.需要指出的是,大面积、大畴区、可控制备本征层间异质结构是实现其实际应用的首要条件.本文总结了基于过渡金属硫属化合物(MX_2)和石墨烯(graphene)层间异质结构的最新研究成果,重点描述了MX_2/graphene和MX_2/MX_2层间异质结构的化学气相沉积(CVD)可控制备、新奇物理性质探索以及这两类异质结构在能源领域(电/光催化析氢反应)中的应用,并讨论了所存在的问题和未来发展方向.
With the discovery of graphene and its excellent properties, two-dimensional layered materials have become the focus of research in the field of materials science.The atoms in each layer of two-dimensional layered materials are connected by chemical bonds and the layers are weakly van der Waals interactions This geometry allows two-dimensional layered materials to be intermixed and matched with each other in the event of lattice mismatch and growth incompatibilities, resulting in many Van der Waals interlayer heterostructures. Heterostructures make use of different physical and chemical properties of different stacking materials and are widely used in the fields of electronics, optoelectronic devices, storage and conversion of renewable energy, etc. It should be pointed out that large area, large domain, controllable It is the first condition to prepare the intergalactic heterostructure for its practical application. The latest research results based on the interlayer heterostructures of transition metal chalcogenides (MX_2) and graphene are summarized, Chemical vapor deposition (CVD) control of graphene and MX_2 / MX_2 interlayer heterostructures, exploration of novel physical properties and their applications in the energy field (electro-photocatalytic hydrogen evolution ) Application, and discusses the problems and the future direction of development.