论文部分内容阅读
聚类分析在科学研究和现实生活中都有广泛的应用.然而,当前的聚类算法仍然面临一些挑战,自动确定最佳聚类数目和复杂分布数据聚类是最主要的两种,自动确定复杂分布数据的聚类数目并对其正确聚类是两者的结合.提出一种基于进化多目标的距离矩阵聚类算法(Multi-objective Distance Matrix Evolutionary Clustering,MODMEC).首先使用一种实数-标签的编码方式表示染色体,该染色体可两次解码成聚类候选解.其次使用聚类代表点代替聚类中心点设计聚类算法,通过类内紧凑度和类间离