论文部分内容阅读
KNN方法是性能最好的文本分类方法之一,但它在分类时要计算待分类文档与所有训练样本的相似度,时间复杂度较大。文中提出了一种基于CBR的文本自动分类方法,先用聚类方法把训练样本库转换为范例库,然后用KNN思想分类。实验结果显示该方法分类的平均召回率和准确率达到了87.07%和89.17%;并且通过分析算法的时间复杂度得知,该方法的分类速度比KNN方法有很大的提高,因此具有很好的实用价值。