论文部分内容阅读
针对裂解炉燃料气离线热值模型泛化能力差的问题,提出一种具有自适应能力的在线支持向量机(Online SVM)建模方法.该方法将增量式支持向量机(ISVM)与近似线性依靠(ALD)条件相结合,通过计算新样本与建模样本间的近似线性依靠值,选择满足ALD条件的独立新样本更新SVM模型.分析裂解炉燃料气热值的影响因素,并用Online SVM算法建立裂解炉燃料气热值在线软测量模型.该模型由离线训练模块和在线模型更新模块组成.离线训练模块基于离线数据训练得到初始热值软测量模型,在线更新模块通过使离线模型学习线性独立