论文部分内容阅读
针对磁瓦缺陷种类多样性及无法准确描述其缺陷的问题,提出一种基于卷积神经网络的缺陷检测方法。构建缺陷类型的数据集,并对数据集中的图像进行预处理;设置卷积神经网络模型参数,训练缺陷分类器;通过训练结果完成对缺陷图像的识别并标注缺陷类型。实验结果表明,该方法检测的准确性和实时性均优于传统检测方法,具有非常好的鲁棒性,为工业生产的实际应用提供了可靠的依据。