A Novel Hidden Danger Prediction Method in CloudBased Intelligent Industrial Production Management U

来源 :中国通信 | 被引量 : 0次 | 上传用户:yumiaochan
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
To prevent possible accidents,the study of data-driven analytics to predict hidden dangers in cloud service-based intelligent industrial production management has been the subject of increasing interest recently.A machine learning algorithm that uses timeliness managing extreme learning machine is utilized in this article to achieve the above prediction.Compared with traditional learning algorithms,extreme learning machine(ELM) exhibits high performance because of its unique feature of a high generalization capability at a fast learning speed.Timeliness managing ELM is proposed by incorporating timeliness management scheme into ELM.When using the timeliness managing ELM scheme to predict hidden dangers,newly incremental data could be added prior to the historical data to maximize the contribution of the newly incremental training data,because the incremental data may be able to contribute reasonable weights to represent the current production situation according to practical analysis of accidents in some industrial productions.Experimental results from a coal mine show that the use of timeliness managing ELM can improve the prediction accuracy of hidden dangers with better stability compared with other similar machine learning methods. To prevent possible accidents, the study of data-driven analytics to predict hidden dangers in cloud service-based intelligent industrial production management has been the subject of increasing interest recently. A machine learning algorithm that uses timeliness managing extreme learning machine is utilized in this article to achieve the above prediction. Companded with traditional learning algorithms (ELM) exhibits high performance because of its unique feature of a high generalization capability at a fast learning speed. Published ELM is proposed by incorporating timeliness management scheme into ELM. When using the timeliness managing ELM scheme to predict hidden dangers, newly incremental data could be added prior to the historical data to maximize the contribution of the newly incremental training data, because the incremental data may be able to contribute reasonable weights to represent the current production situation according to practical analysis o f accidents in some industrial productions. Experimental results from a coal mine show that the use of timeliness managing ELM can improve the prediction accuracy of hidden dangers with better stability compared with other similar machine learning methods.
其他文献
加强和改进在非公经济组织中的党建工作,是关系党执政的经济基础、阶级基础、组织基础和群众基础的重大问题。从2003年以来,我们按照“无党员抓发展、有党员抓组建、有组织
1976年,Steinberg猜想每个既不含4-圈也不含5-圈的平面图是3-可着色的.之后,Erd(o)s提出一个较Steinberg猜想稍弱的问题:是否存在整数k,使得每个不含4至k圈的平面图是3-可着
本文讨论一类具有变系数和变偏差的一阶非线性中立型微分方程的振动性与线性化振动性。通过引入一种变换,给出方程解振动的一系列充分判据,其中一些还是Sharp的;同时,根据具有常
本文基于支持向量机(SVM)的最优解对应于翻译空间的解析中心这一结论,利用解析中心割平面法改进Joachims提出的解决大规模稀疏分类问题的割平面算法,并给出删除多余约束的两条删
纵向数据指对同一组受试个体在不同时间或空间上的重复观测数据,即观测若干次得到的由截面数据和时间数据融合在一起的数据.它的最大优点就是将截面数据和时间序列数据结合在
伴随着计算机技术的飞速发展,信息时代的到来使得各行各业尤其是网络的数据急剧增大,粗糙集理论作为一种处理不一致(inconsistent)、不确定(uncertainty)、不完备(incomplete
基于图像序列的运动目标检测与跟踪是计算机视觉领域的一个重要研究课题,在很多计算机视觉应用中,一个基础而关键的任务是从图像序列中确定运动目标,其中对于固定摄像机下运
政治路线确定以后,干部就是决定的因素。当前,我们国家正处在经济和社会发展的重要时期,艰巨的任务和严峻的形势,对各级干部的思想道德素质提出了更高更严的要求。加强干部
本文主要研究几类具有时滞的随机微分方程解的性质。   全文分三章。   第一章引入了随机微积分的定义,简单介绍了随机泛函微分方程的研究背景及意义,并对其相关文献进行
图像作为一种内容丰富、表现直观的媒体,在许多领域都得到了广泛应用,如数字图书馆、地理信息系统、生物信息学的DNA数据库和医学辅助诊断等。如何在大型图像数据库中快速处