论文部分内容阅读
针对基于局部特征的行人重识别方法在行人错位和姿态变化时识别精度较低的问题,提出一种采用多任务金字塔重叠匹配特征的重识别方法。在训练阶段,使用改进的ResNes50作为主干网络提取特征图,将其切分组合形成金字塔重叠匹配网络,获得全局特征向量并经全局平均池化得到包含多尺度特征的多个局部特征向量,联合使用Softmax损失函数、三元组损失函数和中心损失函数学习全局和局部特征向量,并利用特征归一化层减少损失函数学习目标冲突的影响。在推理阶段,将多个局部特征向量融合为一个新特征向量进行相似性匹配,以获取更好的