论文部分内容阅读
针对标准人工蜂群算法用于支持向量机参数寻优容易陷入局部最优解,精度不高,收敛速度慢等问题,提出一种改进的人工蜂群算法。该算法在雇佣蜂与跟随蜂更新蜜源时,采用基于当前最优解的局部搜索策略,以提高蜜蜂的局部搜索能力,加快收敛速度并获得更高的精度;引入混沌序列使产生的蜜源分布更均匀,防止陷入局部最优。仿真结果表明,改进的人工蜂群算法在搜索速度和精度上均优于同类算法。将改进的人工蜂群算法应用于基于支持向量机的网络行为分类,实验结果表明,网络行为分类速度及识别准确率均得到了一定的提高。