论文部分内容阅读
针对基于传统支持向量机(SVM)的多类分类算法在处理大规模数据时训练速度上存在的弱势,提出了一种基于对支持向量机(TWSVM)的多类分类算法。算法结合二叉树SVM(BT-SVM)多类分类思想,通过在二叉树节点处构造基于TWSVM的分类器来达到分类目的。为减少二叉树SVM的误差累积,算法分类前首先通过聚类算法得到各类的聚类中心,通过比较各聚类中心之间的距离来衡量样本的差异以决定二叉树节点处类别的分离顺序,最后将算法用于网络入侵检测。实验结果表明,所提算法不仅保持了较高的检测精度,在训练速度上还表现出一