论文部分内容阅读
针对用户信任矩阵中的数据稀疏问题,设计用户信任关系的传播规则,根据该规则计算用户之间的信任度,填充用户信任矩阵。在此基础上,结合用户信任传播算法和奇异值分解模型,提出一种社会化推荐算法,将用户评分矩阵与信任关系矩阵相结合,提高推荐系统的预测准确率。在Epinions和Filmtrust公开数据集上的实验结果表明,该算法相比传统推荐算法具有更高的推荐质量。