论文部分内容阅读
多标签分类是指数据可以同属于多个类的分类问题,其数据特征和标签间相关性对分类结果存在影响。因此,提出一种融合前述两种因素的多标签分类算法。将数据用核函数进行特征映射,根据训练数据的k-邻域计算得到每个标签的最大后验概率;并将其加入到对应的数据特征中。用加入最大后验概率的数据特征训练分类器。通过在经典的yeast、scene和emotion数据库上实验,证明了算法的有效性。