论文部分内容阅读
故障样本的不足从一定程度上制约了基于知识的方法在实际故障诊断中的应用,针对这一问题,利用支持向量机在小样本情况下具有较强分类能力的特点,提出了一种基于支持向量机的齿轮故障诊断方法。该方法采用小波变换对齿轮的振动信号进行处理来构造特征向量,并直接输入到支持向量机的多故障分类器中进行故障识别。试验结果表明该方法是有效、可行的,且在小样本情况下比BP神经网络具有更高的诊断精度。