【摘 要】
:
生成函数刻画了正交多项式的很多重要性质.本文的主要目的是根据生成函数的特点研究正交多项式类之间的渐近关系.本文拓展了Lee及其合作者的工作,构造一类双正交多项式系统,并由此构造出分别渐近于Hermite多项式和广义Laguerre多项的函数列;给出渐近于Hermite多项式和广义Laguerre多项的函数列的判定定理.作为这些性质的应用,可以直接获得若干正交多项式和组合多项式的渐近表示,从而验证了
论文部分内容阅读
生成函数刻画了正交多项式的很多重要性质.本文的主要目的是根据生成函数的特点研究正交多项式类之间的渐近关系.本文拓展了Lee及其合作者的工作,构造一类双正交多项式系统,并由此构造出分别渐近于Hermite多项式和广义Laguerre多项的函数列;给出渐近于Hermite多项式和广义Laguerre多项的函数列的判定定理.作为这些性质的应用,可以直接获得若干正交多项式和组合多项式的渐近表示,从而验证了揭示超几何多项式渐近关系的Askey格式成立.
其他文献
本文提出了二维非线性反应扩散方程的局部间断Galerkin谱元法.在空间方向上采用了Legendre-Galerkin Chebyshev谱配置法,即在每个子区域上,该格式按Legendre-G alerkin谱方法形成,子区域交界面处的跳跃项利用数值流量进行处理,非线性项采用在Chebyshev-GaussLobatto点上的插值进行计算.时间方向上采用四阶低存储Runge-Kutta方法.文中
本文针对Riesz回火分数阶平流-扩散方程,采用隐式中点方法离散一阶时间偏导数,用修正的二阶Lubich回火差分算子逼近Riesz空间回火分数阶偏导数,并对平流项采用中心差商进行离散,构造出新的数值方法,获得了数值方法的稳定性和收敛性,该方法的收敛阶在空间和时间方向均达到二阶精度.数值试验验证了数值方法的有效性.
波形松弛(WR)方法的研究成果丰富,但主要集中于收敛性,罕见关于稳定性的研究.研究基于线性多步法的WR方法的线性稳定性,获得了线性稳定的几个充分条件,给出了一些具体的线性稳定WR方法的例子,并提供了一些支持理论结果的数值算例.
在五阶WENO有限差分格式的基础上,六阶WENO有限差分格式引入了额外的四点模板,减少了WENO格式的数值耗散.然而,该格式在驻点上无法达到理想收敛阶.为解决此问题,本文在非线性权重中引入整体模板的光滑性修正因子,使得驻点上非线性权重更快地收敛于理想权重,理论分析表明改进后的六阶格式能够在驻点上达到理想的六阶精度.驻点上的收敛阶测试和间断问题的数值实验表明,新提出的六阶WENO格式不仅在驻点上能够
设(X, d,μ)为一个度量测度空间,满足对于任意的x∈X,μ(B(x, r))关于r在(0,∞)上连续,或者设(X, d,μ)是Hyt?nen意义下满足上双倍条件和几何双倍条件的度量测度空间.在此两种背景条件下,本文建立多线性分数次积分算子I_(m,α)在乘积Lebesgue空间上的端点估计、在乘积Morrey空间上的有界性以及弱型端点估计.
本文综述近年来因子模型研究的最新进展及其在统计机器学习中的应用.因子模型通过较少的因子实现降维,并为协方差矩阵提供了一种低秩加稀疏的结构,不仅受到高维数据分析领域的关注,也被广泛应用于计量经济学、数量金融学、基因组学、神经科学和图像处理等许多科学、工程及人文社科领域的研究中.本文系统阐述利用主成分分析方法提取潜在因子、估计因子载荷、异质结构与整体协方差矩阵的统计推断方法,这套方法被证明可以有效应对
本文给出一个充分必要条件,来保证Poisson方程的解在边界附近零延拓后得到的函数仍然是相对应的延拓问题的解.本文分别在古典解、强解和弱解的框架下证明这个结果.
针对抑制风机性能失效的工程问题,基于可靠性分析理论,将拉丁超立方试验设计、近似模型与计算流体动力学分析技术相结合,研究了一种基于响应面的风机性能混合不确定性分析方法.该方法通过引入区间不确定性,有效地解决了由于缺乏实验样本而导致的知识不确定性建模问题,极大地扩展了可靠性分析技术在流体机械研究中的适用性.引入随机和区间不确定性参数对风机系统进行描述,基于传统的一阶可靠性分析方法,建立了风机性能的随机
The peeling property of Bondi-Sachs metrics for nonzero cosmological constants Fangquan Xie & Xiao Zhang Abstract In this paper, we show that the peeling property still holds for Bondi-Sachs metrics w
在有限元方法中,采用多边形单元可以有效地模拟材料的力学性能,又使得网格剖分变得灵活方便.此外,允许退化情形的多边形单元可以处理出现悬节点的奇异网格.但目前对多边形薄板单元的研究却不多.多边形单元的研究难点在于插值基函数的构造.本文采用样条和基于三角形面积坐标的B网方法,将多边形进行三角剖分,通过适当选取连续性条件消去内部节点自由度,构造允许1-irregular退化的多边形样条插值基函数,再结合离